THE REVISED STRUCTURE OF FURANOFUKINOL, A CONSTITUENT FROM PETASITES JAPONICUS MAXIM. RHIZOMES

Keizo NAYA, Yasuo MAKIYAMA, Takashi MATSUURA, Nobuo II,
Hajime NAGANO,* and Takeyoshi TAKAHASHI*

Department of Chemistry, Faculty of Science, Kwansei Gakuin
University, Uegahara, Nishinomiya, Hyogo 662

* Department of Chemistry, Faculty of Science, The University of Tokyo,
Bunkyo-ku, Tokyo 113

The structure of furanofukinol, a constituent of <u>Petasites</u> japonicus Maxim., proposed previously as 3α ,6 β -dihydroxyfuranoeremophilane (V-a) should be revised to 3β ,6 β -dihydroxyfuranoeremophilane (I) by the PMR study of 3-0-angeloy1-6-0-acety1furanofukinol (VIII) and by the chemical conversion of furanofukinol to 3β -hydroxyeremophilanes (X-a,b). The structures of the two related sesquiterpenes, isolated from <u>Farfugium hiberniflorum</u> Kitam., must therefore be revised to 3β -angeloyloxy- 6β -hydroxyfuranoeremophilane (VIII) and 3β -angeloyloxy- 6β -acetoxyfuranoeremophilane (VIII).

Furanofukinol (I) and its esters have been isolated as the main components from <u>Petasites</u> japonicus Maxim. rhizomes. In a preliminary communication, 1) the stereochemistry of furanofukinol except for the configuration of the 3-OH was established by conversion to the known petasalbin (II), 2) ligularone (III), 3) and 6oxofuranoeremophil-3-ene (IV). The remaining configurational assignment was therefore drawn tentatively to be $3\alpha(eq)$ -OH as in the formula (V-a) from the analogous PMR signals due to 3(ax)-H (W¹/₂=ca. 14 Hz) observed for furanofulinol and the known isopetasol [VI; with $3\alpha(eq)-OH$], 4) on the assumption that furanofulinol adopts a steroidal conformation. Shortly after the two new compounds, $C_{20}H_{28}O_4$ and C₂₂H₃₀O₅, isolated from <u>Farfugium hiberniflorum</u> Kitam. were suggested to be 3-0angeloylfuranofukinol (V-b; now revised to VII) and 3-0-angeloy1-6-0-acetylfuranofukinol (V-c; now revised to VIII), respectively, by their conversion to furanofukinol.⁵⁾ In the detailed PMR study of VIII⁶⁾ the 3-H signal was observed as a quintet due to a large diaxial $(J_{2\beta,3\alpha}=12~\text{Hz})$ and two smaller axial-equatorial $(J_{2\alpha,3\alpha}=J_{3\alpha,4\alpha}=6~\text{Hz})$ vicinal couplings. This can only be explained based on the structure (VIII) with 3 β (eq)-OH group in a non-steroidal conformation $^{7)}$ as in the formula (I-A). This would require revision for the structure of furanofukinol from V-a to I. In order to obtain chemical evidence showing the 3β-OH configuration for furanofukinol (I), both I and the known tetrahydroisopetasol (IX) 8) have now been converted to 3-hydroxyeremophilanes (X-a,b,c)⁹⁾ and then to the corresponding 3-oxo derivatives (XI-a,b). 3-Hydroxyeremophilanes derived from I were found to be 3βhydroxy-7 β H- (X-a) and 3 β -hydroxy-7 α H-eremophilane (X-b) as will be described below. The photooxygenation procedure $^{10)}$ similar to that described previously for

petasalbin (II) was applied for cleavage of the furan ring of I. The oxygenation of I gave a mixture of hydroperoxides [XII; positive to a peroxide-test (KI-AcOH)] showing two spots on TLC. The mixture (XII) was treated with Ac20-pyridine to afford quantitatively a diastereomeric mixture (XIII-a,b), which was chromatographed on silica gel. Elution with light petroleum-ether (10:1) and subsequent recrystallization from diisopropy1 ether gave an 8a-methoxy lactone (XIII-a), mp 132.5-133°, $[\alpha]_D$ -198° (c, 1.05, CHCl₃) and an 8β-methoxy lactone (XIII-b), mp 139-140°, $[\alpha]_{\rm D}$ +180° (c, 1.00, CHC1₃). These assignments were given on the basis of the generalization 10 outlined previously. The mixture (XIII-a,b) was treated with an excess of alkali to afford quantitatively an acid as the sole product (XIV), $C_{15}H_{20}O_{4}$, mp 163.5-164°. Its spectral data were compatible with the structure XIV; IR(KBr): 3360 (OH), 1703 (COOH), 1670 (unsaturated ketone), 1618, 945 cm⁻¹ (terminal methylene); UV(MeOH): λ_{max} 218 (ϵ , 8250), 243 nm (ϵ , 9140); δ (acetone-d $_{6}$): 6.98 (m, COOH and OH), 6.69 (d, J=1.5 Hz, 6-H), 6.11 and 5.68 (each d, J=1.5 Hz, 13- CH_2), 3.76 (sex, J=5.5, 6, and 6 Hz, $W^1/_2=12$ Hz, 3-H), 1.28 (s, 15-Me), 0.98 (d, J= 7.4 Hz, 14-Me). The acid (XIV) was subjected to hydrogenation in KOH-aq MeOH in the presence of 5% Pd-C, epimerization in KOH-MeOH under reflux in a N_2 atmosphere, and then to esterification with CH_2N_2 in ether to give a mixture of esters. The mixture was separated by chromatography on silica gel [eluted with benzene-AcOEt (20:1)] into two esters, (XV-a), an oil, $[\alpha]_D$ -44° (c, 1.21, CHCl₃) and (XV-b), mp 71.2-72.2°, [α] $_{D}$ +65.6° (c, 1.04, CHCl $_{3}$). A distinct difference between the two esters was observed on the signals due to 3-H in their PMR spectra; $\delta(\text{CDCl}_3)$: 4.01

(br m, $W^1/_2=19$ Hz) for XV-a and $\delta(CC1_A)$: 3.87 (m, $W^1/_2=7.2$ Hz) for XV-b. This suggested that XV-a adopts a non-steroidal conformation, while XV-b a steroidal conformation in the solution (vide infra). The presence of diastereomers due to C-11 asymmetric center could not be detected for these esters (XV-a,b) as well as for the products (XVI and XVII). 11) The mixture (XV-a,b) was subjected successively to acetylation, thioketalization, desulfurization, alkaline hydrolysis, and to reacetylation to give an acetoxy acid (XVI) as an oil. The acid (XVI) was treated with N,N'-carbonyldiimidazole and then reduced with $LiAl(t-BuO)_{3}H$ to yield an oily aldehyde [XVII; IR(film): 2670, 1723 cm⁻¹ (CHO)], via imidazolide. Thioketalization of XVII and subsequent desulfurization gave 3-acetoxyeremophilane (XVIII) as an oil. Hydrolysis of XVIII yielded an oily product, which was shown to consist of the two isomers (X-a and X-b, in a ratio of 3.3:1) by GLC examination (SPE, 2 m; column temp, 160°; N₂-flow rate, 40 ml/min; retention time: X-a, 41.6 min; X-b, 27.9 min). The isomeric mixture was separated by chromatogrphy on silica gel [eluted with light petroleum-ether (50:1)], and was purified by PGLC (SF 96, 1.85 m; column temp, 160°; retention time: X-a, 23.7 min; X-b, 18.4 min).

The isomeric 3-hydroxyeremophilanes, $C_{15}H_{28}O$ (by elemental analysis), showed the following spectra, respectively; X-a: an oil, $[\alpha]_D$ -74.2° (c, 0.96, CHCl $_3$); IR (film): 3315, 1051 cm $^{-1}$ (OH); δ (CCl $_4$): 3.95 (ddd, J=5, 6.5, and 12 Hz, $W^1/_2$ =18 Hz, 3 α (ax)-H); X-b: an oil, $[\alpha]_D$ +34.5° (c, 1.46, CHCl $_3$); IR(film): 3375, 1023 cm $^{-1}$ (OH); δ (CCl $_4$): 3.74 (sex, J=5.5, 5, and 5 Hz, $W^1/_2$ =7.5 Hz, 3 α (eq)-H. 9) On the other hand, 3 α (eq)-hydroxy-7 α H- eremophilane (X-c), 9) mp 90-91°, $[\alpha]_D$ +5.0° (c, 1.07, CHCl $_3$), derived from tetrahydroisopetasol (IX) 8) with the known configuration

proved to be different from the isomers (X-a,b) in comparison of their GLC, IR, and PMR data; X-c: 33.9 min (the same conditions as above, SPE); IR(CHCl₃): 3580, 1010 cm⁻¹ (OH); δ (CDCl₃): 3.52 (sex, J=5, 10, and 10 Hz, W¹/₂=18 Hz, 3 β (ax)-H). Therefore, a pair of isomers at C-7 (X-a and X-b) were readily assumed to adopt a nonsteroidal and a steroidal conformation, respectively, on the basis of the J-values of the 3-H, and consequently these isomers should be 3β (eq)-hydroxy-7 β H- and 3 β (ax)-hydroxy-7 α H-eremophilane, respectively. As would be expected from the above conclusion, the same oily 3-oxo derivative (XI-b), $(\alpha)_0$ -4.1° (c, 0.97, CHCl₃), was obtained from X-b and X-c. However, this ketone (XI-b) was found to be different from oily 3-oxoeremophilane (XI-a), $(\alpha)_0$ -69.5° (c, 0.87, CHCl₃) derived from X-a in comparison of their GLC, IR, and PMR data.

The structure of furanofukinol should now be revised from V-a to I, and its PMR spectrum can well be explained based on the non-steroidal conformation (I-A; R=H), $3\beta(eq)$, $6\beta(pseudoeq)$ -dihydroxyfuranoeremophilane. The 3β -OR configuration for the related compounds (VII and VIII) was also shown.

References

- 1) K. Naya, M. Nakagawa, M. Hayashi, K. Tsuji, and M. Naito, Tetrahedron Lett., 1971, 2961.
- 2) L. Novotný, V. Herout, and F. Šorm, Collect. Czech. Chem. Commun., <u>29</u>, 2189 (1964); H. Ishii, T. Tozyo, and H. Minato, J. Chem. Soc., (C), 1966, 1545.
- 3) H. Ishii, T. Tozyo, and H. Minato, Tetrahedron, 21, 2605 (1965).
- 4) K. Naya, I. Takagi, Y. Kawaguchi, Y. Asada, Y. Hirose, and N. Shinoda, Tetrahedron, 24, 5871 (1968).
- 5) H. Nagano and T. Takahashi, Bull. Chem. Soc. Jpn., 45, 1935 (1972).
- 6) H. Nagano, Ph. D. Thesis, The University of Tokyo, Tokyo Japan, 1973.
- 7) Several furanceremophilanes have been reported to adopt non-steroidal conformations: H. Nagano, Y. Tanahashi, Y. Moriyama, and T. Takahashi, Bull. Chem. Soc. Jpn., 46, 2840 (1973).
- 8) I. Takagi, Y. Tazuke, and K. Naya, Bull. Chem. Soc. Jpn., 50, 3320 (1977).
- 9) The other properties of X-b and X-c will be reported in a full paper.
- 10) K. Naya, R. Kanazawa, and M. Sawada, Bull. Chem. Soc. Jpn., 48, 3220 (1975); K. Naya, N. Nogi, Y. Makiyama, H. Takashina, and T. Imagawa, ibid., 50, 3002 (1977); detailed description on XIII-a and XIII-b will be presented in a full paper.
- 11) The saturated lactone transformed from XV-a by reduction with $NaBH_4$ has been found to consist of the C-11 diastereomers: details will be reported soon.
- 12) H. A. Staab and H. Brauling, Justus Liebigs Ann. Chem., 654, 119 (1962).
- 13) Detailed data on XI-a and XI-b will be reported in a full paper.

(Received January 18, 1978)